Trains a probabilistic naive bayes model
Trains a naive bayes model. It is built on top high performance naivebayes R package.
prior
numeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
laplace
value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)
usekernel
if TRUE, density is used to estimate the densities of metric predictors
model
for internal use
new()
NBTrainer$new(prior, laplace, usekernel)
prior
numeric, prior numeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
laplace
nuemric, value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)
usekernel
logical, if TRUE, density is used to estimate the densities of metric predictors
predict()
## ------------------------------------------------
## Method `NBTrainer$new`
## ------------------------------------------------
data(iris)
nb <- NBTrainer$new()
## ------------------------------------------------
## Method `NBTrainer$fit`
## ------------------------------------------------
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
## ------------------------------------------------
## Method `NBTrainer$predict`
## ------------------------------------------------
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
y <- nb$predict(iris)
#> Warning: predict.naive_bayes(): more features in the newdata are provided as there are probability tables in the object. Calculation is performed based on features to be found in the tables.